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Abstract. We present a quantum mechanical, classical and semiclassical study of the energy spectrum of
a Rydberg hydrogen atom in the presence of uniform magnetic and quadrupolar electric fields. Here we
study the case that the z-component Pφ of the canonical angular momentum is zero. In this sense, the
dynamics depends on a dimensionless parameter λ representing the relative strengths of both fields. We
consider that both external fields act like perturbations to the pure Coulombian system. In the classical
study we find that, depending on the λ value, the phase flow shows four different regimes made up of
vibrational and rotational trajectories, which are connected, respectively with the degenerate energy levels
of double symmetry, and with the non-degenerate energy levels. The transit from one regime to another
takes place by means of three oyster bifurcations. The semiclassical results are in good agreement with
the results of the quantum mechanical calculations within the first-order perturbation theory. Moreover,
we find that the evolution of the quantum/semiclassical energy spectrum can be explained by means of a
classical description.

PACS. 32.60.+i Zeeman and Stark effects – 03.65.Sq Semiclassical theories and applications –
05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

The study of the dynamics of perturbed Rydberg atoms
has been a very active field where classical and quantum
mechanics shake hands often [1]. With this aim, and in
order to complete a recent study performed in [2], here we
consider the problem of a Rydberg hydrogen atom per-
turbed by a uniform magnetic field and a quadrupolar
electric field. In that paper, an exhaustive study of the
classical behaviour of the system, covering different as-
pects as integrability, parametric bifurcations and chaotic
behaviour, has been done.

In the usual approximation for non-strong fields [3],
the dynamics of the system is accurately governed by the
following Hamiltonian [2,4]

H =
1
2
(P 2

ρ + P 2
z +

P 2
φ

2ρ2
) − 1√

ρ2 + z2
− γ Pφ

+
1
2

[
(γ2 − w2

z

2
)ρ2 + w2

zz2

]
, (1)

where cylindrical coordinates (ρ, z, φ) and atomic units
are used. In equation (1), Pφ is the z-component of the
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canonical angular momentum, γ the Larmor frequency in-
duced by the magnetic field and wz the axial frequency
induced by the quadrupolar electric field. Due to the axial
symmetry, in Hamiltonian (1) Pφ is an integral, and (1)
defines a two-dimensional dynamical system depending on
the parameters Pφ, γ and wz . As it is shown in [2], this
system is in some cases equivalent to the one describing
the generalised van der Waals interaction [5]. However,
unlike the generalised van der Waals interaction, it can be
considered as a real system describing a wider variety of
dynamical situations.

Here in this paper we suppose that the Rydberg hy-
drogen atom is weakly perturbed by the magnetic and
the quadrupolar fields. Under this assumption, we can
treat the problem by using standard classical, quantum
and semiclassical tools which provide a global vision of
the dynamics of the system. We consider the Pφ = 0 case.

The paper is organised as follows. In Section 2, by
using classical perturbation theory, we compute an in-
tegrable approximation (normal form) to the original
Hamiltonian. The dynamics arising from the normalised
Hamiltonian is studied. This study involves the analysis
of the stability of the equilibrium points, their bifurca-
tions and the phase flow evolution. In Section 3, we cal-
culate the quantum energy levels by means of first-order
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quantum perturbation theory. In Section 4, we obtain the
energy spectrum by semiclassical quantization of the nor-
mal form. We also compare the semiclassical results to
those obtained quantically. Finally, in Section 5, the main
results of the paper are summarised.

2 Classical perturbation theory

The Hamiltonian (1) may be written as the sum H =
H0 + H1 with

H0 =
1
2
(P 2

ρ + P 2
z +

P 2
φ

2ρ2
) − 1√

ρ2 + z2
,

H1 = −γPφ +
1
2

[
(γ2 − w2

z

2
)ρ2 + w2

zz2

]
, (2)

where the term H0 stands for the pure Coulombian sys-
tem, while the term H1 describes the presence of the two
external fields. Each negative value of H0 (bounded or-
bits) defines the semi-major axis a = −1/2H0 and the
frequency ŵ = (−2H0)3/2 of a Keplerian orbit. When
the effect of the external fields is taken as a perturba-
tion to the pure Coulombian system, the trajectories of
the electron can be described as Keplerian ellipses whose
orbital parameters evolve under the influence of the per-
turbation. Following the Solove’v perspective [6], we as-
sume that γ � ŵ and wz � ŵ. Under these condi-
tions, the Hamiltonian H1 can be treated as a first order
perturbation of H0. In this context, a normalization in
the usual sense [7] allows us to reduce the problem to a
integrable dynamical system where only one degree of
freedom is left. To carry out this reduction, a Lie trans-
formation [8] is sufficient. From the reduction, the new
Hamiltonian admits the principal action (corresponding
to the principal quantum number n) as an integral. As
done for the Zeeman effect [9,10], for the Stark-Zeeman
effect [11] and for the generalised van der Waals poten-
tial [12], we perform a Delaunay normalization [13] in the
Keplerian action-angle variables (I1, I2, I3, φ1, φ2, φ3) [14].
The actions I3, I2 and I1 are, respectively, the princi-
pal Delaunay variable (which corresponds to the principal
quantum number n), the angular momentum (which cor-
responds to the quantum number l) and the z-component
Pφ of the angular momentum (which corresponds to the
the magnetic quantum number m). On the other side, the
angles φ3, φ2 and φ1 are, respectively, the mean anomaly,
the argument of the perinucleus (the angle between the
Runge-Lenz vector and the nodal line) and the angle be-
tween the angular momentum and the z-axis.

The Delaunay normalization is a canonical transfor-
mation

(I1, I2, I3, φ1, φ2, φ3) −→ (I ′1, I
′
2, I

′
3, φ

′
1, φ

′
2, φ

′
3)

which converts H into a function H′ that does not depend
on the averaged mean anomaly φ′

3. By performing the re-
duction to the first order, and after dropping the primes

in the new variables, the normalised Hamiltonian (for the
special case I1 = Pφ = 0) comes out as the sum

H′ = H′
0 + H′

1

H′
0(I3) = − 1

2I2
3

,

H′
1(φ2, I2) =

γ2I4
3

16
(
(2 + λ2)(2 + 3e2)

+5(2 − 3λ2)e2 cos 2φ2

)
, (3)

where e =
√

1 − I2
2/I2

3 is the eccentricity of the Ke-
plerian electronic orbits. Moreover, we have introduce
the dimensionless parameter λ = wz/γ which represents
the ratio between the Larmor frequency γ and the axial
frequency wz induced by the quadrupolar electric field.
Note that in fact λ is representing the ratio between the
strengths of the two external fields. As a consequence of
I1 = 0, the orbital plane is always perpendicular to the
(x, y)-plane and it rotates around the z-axis with the (con-
stant) Larmor frequency. Since I3 is a constant of the mo-
tion in (3), the term H′

0 can be neglected, and the nor-
malised Hamiltonian H′ reduces to H′

1. Because H′ has
one degree of freedom, the phase trajectories are the maps
of H′ on the cylinders (φ2, I2). However, this representa-
tion do not cover the entire phase space, because they
exclude the circular orbits e = 0 (I2 = I3). This singu-
larity disappears [15] when the system is treated with the
following variables

u = e cosφ2, v = e sinφ2, w = ±
√

1 − e2 = ±I2

I3
· (4)

It is worth noticing that (u, v) are the Cartesian compo-
nents of the Runge–Lenz vector (u2 + v2 = A2, v = Az),
while w is the angular momentum I2 divided by I3. In this
new map (u, v, w), given that

u2 + v2 + w2 = 1,

the phase space consists of a unit radius sphere. In these
coordinates, the points with w > 0 (I2 > 0) stand for
Keplerian ellipses travelled in a direct (prograde) sense,
while those points with w < 0 (I2 < 0) represent Kep-
lerian ellipses travelled in a retrograde sense. Moreover,
any point in the equatorial circle w = 0 (I2 = 0) corre-
sponds to a rectilinear orbit passing through the origin.
Finally, the north (south) pole corresponds to circular or-
bits (e = 0) travelled in a direct (retrograde) sense. In
coordinates (u, v, w) the Hamiltonian H′ ≡ H′

1 becomes
the function

H′ =
γ2I4

3

8
[
2 + λ2 + (8 − 6λ2)u2 + (9λ2 − 2)v2

]
. (5)

The Hamiltonian (5) indicates that the phase flow is time
reversal symmetric with respect to the planes u = 0, v = 0
and w = 0. Consequently, the isolated equilibria, if any,
must be E1,2 = (±1, 0, 0), and/or on E3,4 = (0,±1, 0)
and/or on E5,6 = (0, 0,±1). We shall also deduce this
fact from the equations of the motion. In this way, taking
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Table 1. Energy, stability and kind of orbit of the isolated equilibria.

Equilibrium Energy Stable when Type of orbit

E1,2 = (±1, 0, 0) 5
8
γ2I4

3 (2 − λ2) λ ∈ [0,
√

2/3) ∪ (2/
√

3, ∞) linear orbits along ±ρ

E3,4 = (0,±1, 0) 5
4
γ2I4

3λ2 λ ∈ [0,
√

2/3) ∪ (
√

2/3, ∞) linear orbits along ±z

E5,6 = (0, 0,±1) 1
8
γ2I2

3 (λ2 + 2) λ ∈ [
√

2/3, 2/
√

3] circular orbits

into account the Jacobi-Liouville theorem and the Poisson
brackets between the variables (u, v, w)

[u, v] = w, [v, w] = u, [w, u] = v,

the equations of motion associated to (5) are

u̇ = [u,H′
1] =

I4
3

4
(9λ2 − 2)vw,

v̇ = [v,H′
1] =

I4
3

2
(3λ2 − 4)uw,

ẇ = [w,H′
1] =

5I4
3

4
(2 − 3λ2)uv.

(6)

The equilibria of the reduced system are the solutions of
the equations resulting of equating to zero the righthand
members of the equations (6). It straightforward to see
that, when λ is different from (±√

2/3,±√
2/3,±2/

√
3)

we arrive to the six mentioned (isolated) equilibria. Ta-
ble 1 shows their corresponding energy, stability and type
of orbit. We performed the stability analysis by study-
ing the roots of the characteristic equation resulting from
the variational equations of motion [16,17]. At the special
cases of λ = (±√

2/3,±√
2/3,±2/

√
3) we find that:

– when λ =
√

2/3, the number of isolated equilibria re-
duces to E1,2 and it appears a circle of non-isolated
equilibria along the meridian v2 + w2 = 1;

– when λ =
√

2/3, the number of isolated equilibria re-
duces to E5,6 and it appears a circle of non-isolated
equilibria along the meridian u2 + v2 = 1;

– when λ = 2/
√

3, the number of isolated equilibria re-
duces to E3,4 and it appears a circle of non-isolated
equilibria along the meridian u2 + w2 = 1.

This analysis indicates that the systems suffers three
parametric bifurcations at the special values of λ =
(±√

2/3, ±√
2/3,±2/

√
3). We can confirm the presence

of bifurcations by studying the evolution, as a function
of λ, of the energies of the equilibria (see Fig. 1). We ob-
serve in this figure that in the interval 0 ≤ λ <

√
2/3 the

equilibria E1,2 are absolute maxima. As a consequence of
the Lyapunov theorem [17], these equilibria are always
stable in this interval. For λ >

√
2/3 the absolute maxi-

mum is reached at the equilibria E3,4 and then they are
stable in this interval. On the other hand, the absolute
minima is reached at the equilibria E3,4 over the interval
0 ≤ λ <

√
2/3, at E5,6 over

√
2/3 < λ <

√
2/3 and at E1,2

for λ > 2/
√

3, in such a way that, by the Lyapunov the-
orem, they are also stable in the corresponding interval.

Fig. 1. Evolution of the values of the energy at the equilib-
ria as a function of the parameter λ. Dashed lines indicates
instability.

We observe that at λ =
√

2/3 the energy of the equilibria
E3,4 and E5,6 is the same. A similar behaviour takes place
for E1,2 and E3,4 at λ =

√
2/3, and for E1,2 and E5,6 at

λ = 2/
√

3.
As we will find in Section 3, Figure 1 will be very useful

in order to understand the quantum energy levels.
A detailed study of the behaviour of the system as a

function of λ is provided by the phase flow evolution. In
Figure 2 is shown the phase flow evolution on the cylin-
ders (φ2, I2) — corresponding to Hamiltonian (3) — as
well as the phase flow on the sphere — corresponding to
Hamiltonian (4).

When 0 ≤ λ <
√

2/3, the phase flow is made of four
families of contour lines (see Figs. 2a and 2b). In the
(u, v, w) representation these families are kept apart by
a separatrix passing through the unstable equilibria E5,6.
The equilibria E1 and E2 are located at (φ2, I2) = (0, 0)
and (π, 0), the equilibria E3 and E4 are located at (π/2, 0)
and (3π/2, 0). Finally, the contour lines I2 = ±I3 are,
respectively, the equilibria E5 and E6. The two families
of levels around the equilibria E1,2 (E3,4) correspond to
quasiperiodic rotational R1,2 (vibrational V3,4) orbits os-
cillating around the linear orbits E1,2 (E3,4). A set of
these orbits is depicted in Figure 3. For plotting Figure 3
we used the following procedure. Firstly, we take into ac-
count that every phase curve corresponds to a Keplerian
ellipse whose eccentricity e evolves as the phase curve is
gone over. The semi-major axis a is fixed by the energy of
the phase curve. Hence, every point (φ2, I2) of the phase
curve has associated a Keplerian ellipse whose cylindrical
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Fig. 2. Phase space evolution.

Fig. 3. Characteristic levels: rotational
R1,2, rotational R5,6 and vibrational V3,4.

coordinates (ρ, z) are given by

ρ = |r cos θ| , z = r sin θ,

r =
a(1 − e2)

1 − e cos(φ2 − θ)
, 0 ≤ θ ≤ 2π. (7)

Note that, because of the symmetry properties of Hamil-
tonian (4), levels R1,2 and V3,4 occur always in pairs. How-
ever, it is important to note that when transformation (7)
is applied to a pair of levels R1,2, they become a unique
rotational orbit in cylindrical coordinates. However, ap-
plied to a pair of vibrational levels V3,4, they convert to
different orbits in the (ρ, z) plane. Moreover, it is impor-

tant to remark that, while for a rotational level R1 or R2

it is necessary to sweep the whole phase curve when (7)
is applied, for a vibrational level V3 or V4 it is necessary
to sweep only the halfway, because the other part would
give the same values of (ρ, z). This fact will have capital
importance for the semiclassical quantization in Section 4.

As λ approaches the value
√

2/3, the two homo-
clinic orbits of the separatrix tend to the meridian cir-
cle v2 + w2 = 1 (see Fig. 2b), in such a way that, when
λ =

√
2/3 they meet one another along that merid-

ian which becomes a circle of non-isolated equilibria for
that value of λ (Fig. 2c). This is an example of a oyster
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bifurcation. When the value
√

2/3 is crossed, a new sepa-
ratrix passing through E3,4 opens its lobes (see Fig. 2d).

As a consequence of this bifurcation, the equilibria
E3,4 and E5,6 switch their stability, the vibrational lev-
els V3,4 disappear and two new families of levels appear
around the equilibria E5,6. This new kind of levels (named
as R5,6) is associated to quasiperiodic orbits oscillating
around the circular orbits E5,6 (see Fig. 3). These levels
correspond also to rotational motion. In fact, in a pen-
dulum or rotor picture, levels R5,6 would correspond to
a genuine rotational motion where the rotor or pendulum
is describing complete rotations. Note that, for a given
energy, the corresponding rotational levels R5,6 are equiv-
alent because they represent the same orbit travelled in
direct (around E5) or retrograde sense (around E6).

In the interval
√

2/3 < λ <
√

2/3, the homoclinic
lobes tend to the equator as λ approaches

√
2/3 (see

Fig. 2e), in such a way that, for λ =
√

2/3, the equa-
tor is a circle of non-isolated equilibria and the phase flow
is made of rotational levels R5,6 (see Fig. 2f). A second
oyster bifurcation takes place. As a consequence of this
bifurcation, the equilibria E1,2 and E3,4 exchange their
stability, the separatrix passes now through the equilib-
ria E1,2 and the phase flow is made of vibrators (V3,4)
around E3,4 and rotators R5,6 around E5,6 (see Fig. 2g).
In the interval

√
2/3 < λ < 2/

√
3 the separatrix lobes

tend to the meridian u2 + w2 = 1 in such a way that a
third oyster bifurcation takes place along that meridian
at λ = 2/

√
3. Note that, for λ = 2/

√
3, the phase flow

consists of only vibrational levels V3,4 (see Fig. 2h). For
λ > 2/

√
3 the equilibria E1,2 and E5,6 switch their stabil-

ity, and the phase flow has the same structure than in the
interval λ <

√
2/3.

3 Quantum perturbation theory

When the external fields are perturbations, their effect on
the energy spectrum of the hydrogen atom may be calcu-
lated by using first-order degenerate perturbation theory.
From a qualitative point of view, this assumption holds
when the perturbations strengths γ and λ are smaller than
the energy spacing between consecutive hydrogenic man-
ifolds, i.e.,

γ2n7 � 1, w2
zn7 � 1.

Hence, for a given n-manifold, the eigenstates of (1) for
m = 0 can be expressed as a function of the pure hy-
drogenic basis by using the following expansion over the
orbital quantum number l

Ψn,k(r, θ) =
n−1∑
l=0

cnk
l Rnl(r)Y 0

l (θ, 0), k = 0, ..., n− 1, (8)

since n remains a good quantum number within the first-
order theory. The values of coefficients cnk

l follow after
solving the secular problem for the perturbation, which
involves the diagonalization of a matrix obtained by rep-
resenting the operators ρ2 = r2 sin2 θ and z2 = r2 cos2 θ

Fig. 4. Energy-level shifts of the n = 20 manifold for γ ≈
2.8×10−6 as a function of λ. Dashed lines represent the energy
evolution of the classical equilibria for the same values of the
parameters.

in the hydrogenic basis {|nlm〉; l = 0, ..., n − 1; m = 0}.
We note that, because H commutes with the parity opera-
tor Π , each eigenstate Ψn,k(r, θ) has the same definite par-
ity as the corresponding unperturbed eigenstate. From (1),
the required matrix elements are

γ2

2
[(1 − λ2

2
)ρ2

ll′ + λ2z2
ll′ ] (9)

being

ρ2
ll′ =〈nl0|ρ2|nl′0〉

=−5n2

2
(l+2)(l+1)

√
(n2−(l+ 2)2)(n2−(l+1)2)
(2l + 5)(2l + 3)2(2l + 1)

δl,l′+2

+
n2[5n2 + 1 − 3l(l + 1)](l2 + l − 1)

(2l − 1)(2l + 3)
δl,l′

− 5n2

2

√
(n2 − l2)(n2 − (l − 1)2)

× l(l − 1)√
(2l + 1)(2l − 1)2(2l − 3)

δl,l′−2 (10)

z2
ll′ = 〈nl0|z2|nl′0〉

=
n2

2
[5n2 + 1 − 3l(l + 1)]δl,l′ − 〈nl0|ρ2|nl′0〉.

If we denote the eigenvalues (energy shifts) of the ma-
trix (9) by ∆En,l(γ, λ), the energy levels are

En,l = −1/2n2 + ∆En,l(γ, λ).

Both parities energy-level shifts (in atomic units) for the
n = 20 manifold and γ = 1/10n7/2 ≈ 2.8 × 10−6 in the
range λ ∈ [0, 1.3] are shown in Figure 4. In this figure and
for the same values of γ and n (i.e., I3), it is superimposed
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the evolution of the energy of the classical equilibria ob-
tained in Section 2. We observe in this figure that the ener-
gies of the classical equilibria act like the enveloping of the
quantum spectrum, in such a way that the quantum spec-
trum presents three zones of accumulations (strong degen-
eration) around the values of λ = (

√
2/3,

√
2/3, 2/

√
3) for

which the classical system suffers the three bifurcations.
In other words, the evolution of the energies of the classi-
cal equilibria is a some kind of sketch of the evolution of
the quantum spectrum.

Finally, the mentioned parallelism between classical-
quantum energy behaviour proves again that classical me-
chanics is a powerful tool which provides a compact de-
scription of the energy level structure of the perturbed
Rydberg atoms.

4 Semiclassical quantization

As we have seen in Section 2, the classical normalised
system (3) is integrable, therefore the semiclassical en-
ergy levels can be calculated by means of the so–called
Einstein–Brillouin–Keller (EBK) quantization rules [18].
From the semiclassical point of view, each regular trajec-
tory having appropriately quantized values of the action
variables corresponds to a quantum state. Such trajecto-
ries are usually called the eigentrajectories. More exactly,
the whole class of the trajectories confined on an invariant
torus determined by quantized values of the action vari-
ables is that which corresponds to a quantum state [19].
However, we can take an arbitrary trajectory on the torus
as representative. In the problem at hand, the normal
form (3) can be quantized by applying the EBK rules to
the action-angle variables (I1, I2, I3, φ1, φ2, φ3) [20]. Ex-
pressed in these variables, the Hamiltonian H′

1 takes the
form

ε ≡ H′
1(φ2, I2)

=
γ2I4

3

16

{
(2 + λ2)

[
2 + 3

(
1 − I2

2

I2
3

)]
+5(2 − 3λ2)

(
1 − I2

2

I2
3

)
cos 2φ2

}
. (11)

In the above expression I1 and I3 are, respectively, exact
and approximate constants of the motion and they can be
quantized as in the unperturbed hydrogen atom

I1 = m = 0, I3 = n, (12)

where m is the magnetic quantum number and n is the
principal quantum number. However, because of the pres-
ence of the perturbations, the angular momentum I2 is
not a constant of the motion, and the action which has to
be quantized is the following [21]

A =
1
2π

∮
C

I2 dφ2 = k +
1
2
, (13)

where I2(φ2,H1) appears after solving equation (11)
for I2. A similar strategy for the semiclassical quantization

has been followed in the study of the Zeeman effect [22],
the Zeeman-Stark effect [23] and the instantaneous [24]
and generalised [25] van der Waals interaction.

In Section 2 we saw that, depending on the value
of λ, we find four different phase flows. The evolution
from one to another is via three oyster bifurcations for
λ = (

√
2/3,

√
2/3, 2/

√
3). Through these bifurcations, the

six equilibria interchange their stability, which gives rise to
different kind of trajectories. When this phase flow evolu-
tion is considered in the cylinders (φ2, I2), trajectories are
sorted in two main categories: the vibrational trajectories
(V3, V4), and the rotational trajectories (R1, R2) inside the
separatrix and (R5, R6) outside the separatrix.

In Section 2 we noted that every pair of levels R1,2 rep-
resents the same orbit in the real space (ρ, z). Therefore, to
obtain the corresponding semiclassical spectrum, we must
apply the rule (13) either to levels R1 or to levels R2.
Hence, applying (13) to levels R1, the action integral A
is 1/2π times the area enclosed by a given rotational or-
bit R1. We also noted that every pair of vibrational half-
loops V3,4 represents different orbits in the plane (ρ, z),
in such way that (13) has to be applied to both levels V3

and V4. In this case, the action integral A is 1/2π times the
area enclosed between a given vibrational contour line V3

(V4) and the line I2 = 0. Finally, because every pair of
rotational trajectories R5,6 is the same orbit travelled in
opposite senses, the action integral A can be obtained as
1/2π times the area enclosed by a given orbit R5 and the
line I2 = 0.

Now, in order to apply the semiclassical rule (13), let
us consider separately the aforementioned four phase flow
regimes.

For 0 ≤ λ <
√

2/3, the energy ε takes values
ε3,4 ≤ ε ≤ ε1,2 and the energy at the separatrix is
εs = ε5,6 (see Tab. 1 and Fig. 1). The phase space consists
of a double family of vibrational trajectories (V3, V4)
around E3,4, and another double family of rotational
orbits (R1, R2) around E1,2. These two double families
are divided by the separatrix passing through E5,6 (see
Figs. 2a and 2b). Taking into account the symmetries
of the (φ2, I2) phase space, the action integral A for
vibrational motions (V3, V4) is given by

AV3,V4 =
1

πγI3
J (ε)

=
1

πγI3

∫ π/2

φ0
2

√
5γ2I4

3 [2+λ2−(3λ2−2) cos 2φ2]−16ε

3(2 + λ2) − 5(3λ2 − 2) cos 2φ2
dφ2,

ε3,4 < ε < ε5,6, (14)

while for the rotational orbits R1, it results

AR1 =
1

πγI3
J (ε)

=
2

πγI3

∫ φ0
2

0

√
5γ2I4

3 [2+λ2−(3λ2−2) cos 2φ2]−16ε

3(2 + λ2) − 5(3λ2 − 2) cos 2φ2
dφ2,

ε5,6 < ε < ε1,2, (15)

where φ0
2 = 1

2 arccos
[

1
3λ2−2

(
2 + λ2 − 16ε

5γ2I4
3

)]
.
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For λ =
√

2/3, the first bifurcation, the energy ε takes
values ε3,4 = ε5,6 ≤ ε ≤ ε1,2 (see Tab. 1 and Fig. 1). The
phase flow is only made of the double family of rotational
orbits (R1, R2) around the equilibria E1,2 (see Fig. 2c).
In this case, the action integral A for the rotational mo-
tion R1 is the same as (15).

For
√

2/3 ≤ λ <
√

2/3, the energy ε ∈ [ε5,6, ε1,2] and
the energy at the separatrix is εs = ε3,4 (see Tab. 1 and
Fig. 1). In this case, the phase space consists of the double
family of rotational trajectories (R1, R2) under the separa-
trix, and another family of rotational orbits R5, R6 above
the separatrix passing through the unstable equilibria E3,4

(see Figs. 2d and 2e). Taking into account the symmetries
of the phase space, for the rotational motion R5, the ac-
tion integral A is

AR5 =
1

πγI3
J (ε)

=
1

πγI3

∫ π/2

−π/2

√
5γ2I4

3 [2+λ2−(3λ2−2) cos 2φ2]−16ε

3(2 + λ2) − 5(3λ2 − 2) cos 2φ2
dφ2,

ε5,6 < ε < ε3,4, (16)

whereas for the rotational trajectories R1, the integral A
is the same as (15) with ε3,4 < ε < ε1,2.

For λ =
√

2/3, the second bifurcation, the energy ε
takes values ε5,6 ≤ ε ≤ ε1,2 = ε3,4 (see Tab. 1 and
Fig. 1). The phase flow is only made of the rotational
orbits (R5, R6) around the equilibria E5,6 (see Fig. 2f).
Therefore, in this case the action integral A for these ro-
tational trajectories is given by (16).

For
√

2/3 ≤ λ < 2/
√

3, the energy ε ∈ [ε5,6, ε3,4] and
the energy at the separatrix is εs = ε1,2 (see Tab. 1 and
Fig. 1). Now, the phase space consists of the double family
of vibrational orbits (V3, V4) and the family of rotational
trajectories (R5, R6) outside the separatrix passing in this
case through the equilibria E1,2 (see Fig. 2g). The action
integral A results in (14) with ε ∈ (ε1,2, ε3,4) for the vibra-
tional orbits, while for the rotational ones A is the same
as (16) with ε ∈ (ε5,6, ε1,2).

For 2/
√

3, the third bifurcation, the energy ε takes
values ε1,2 = ε5,6 ≤ ε ≤ ε3,4 (see Tab. 1 and Fig. 1). The
phase flow is only made of the double family of vibrational
orbits (V3, V4) (see Fig. 2h). In this case, the action inte-
gral A for these vibrational trajectories yields (14) with
ε ∈ (ε1,2, ε3,4).

Finally, for λ > 2/
√

3, the energy ε ∈ [ε1,2, ε3,4] and
the energy at the separatrix is εs = ε5,6 (see Tab. 1 and
Fig. 1). Again, the phase flow consists of the double family
of vibrational trajectories (V3, V4), and the double family
of rotational orbits (R1, R2). These two double families
are kept apart by the separatrix passing through equilibria
E5,6 (see Fig. 2i). For the R1 rotational motions, the action
integral A is given by (15) with ε1,2 < ε < ε5,6, whereas
for the (V3, V4) vibrational orbits A results in (14) with
ε5,6 < ε < ε3,4.

In order to obtain the semiclassical energy levels En,k

of the system for any given quantized values k and n,
the application of the EBK rules (12) and (13), yields the

Fig. 5. Semiclassical energy-level shifts of the n = 20 manifold
for γ ≈ 2.8 × 10−6 as a function of λ.

following equation

J (ε) = π n γ

(
k +

1
2

)
, (17)

where J (ε) are the integrals appearing in (14), (15)
and (16) with the adequate limits for ε depending on the
value of λ. We have solved equation (17) by means of an
appropriate numerical bisection procedure for finding ze-
ros, combined with the numerical integration of J (ε). If
we label the solution of (17) with εn,k (the energy-level
shifts), we get the following semiclassical energy formula

En,k = − 1
2n2

+ εn,k. (18)

In Tables 2 and 3 are shown, for n = 20, γ ≈ 2.8 × 10−6

and eight different values of λ in the range λ ∈ [0, 1.3],
the semiclassical energy-level shifts together with the cor-
responding quantum-mechanical results from Section 3.
Note that the n = 20 manifold consists of twenty semi-
classical states because the vibrational levels correspond-
ing to the states (V3, V4) are always doubly degenerate. It
can be seen that the semiclassical results are in very good
agreement with the quantum-mechanical ones. The tiny
splitting of the degeneracy appearing for the quantum-
mechanical values of the vibrational energy levels near the
classical separatrix is due to a tunnelling between vibra-
tional states V3 and V4 in the vicinity of the separatrix.
This splitting does not appear in the semiclassical energy
levels because the semiclassical EBK rules do not incor-
porate quantum-mechanical tunnelling effects. Figure 5
shows the semiclassical energy-level shifts appearing in
the aforementioned tables. In this figure we have depicted
with different symbols the energy shifts corresponding to
different types of classical orbits. As was to be expected,
Figure 5 is an accurate sketch of Figure 4.

In some cases (e.g. for λ = 0.3 in Tab. 2 and for
λ = 1.0 in Tab. 3) we have obtained from the solu-
tion of equation (17) only n − 1 levels instead of n for
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Table 2. Energy-level shifts of the n = 20 manifold for γ ≈ 2.8 × 10−6 and different values of λ. Comparison between the
semiclassical and quantum-mechanical results. k: semiclassical quantum number. CO: corresponding type of the classical orbit,
vibrational (Vi) or rotational (Ri) or ro–vibrational (S∗ close to separatrix). SC: semiclassical result. QM: quantum-mechanical
result. Π : parity of the quantum-mechanical state.

λ = 0

k CO SC × 10−6 QM × 10−6 Π

0 R1 1.49350 1.49516 e

1 R1 1.36078 1.36243 o

2 R1 1.23511 1.23674 e

3 R1 1.11649 1.11811 o

4 R1 1.00494 1.00655 e

5 R1 0.90047 0.90207 o

6 R1 0.80313 0.80472 e

7 R1 0.71295 0.71452 o

8 R1 0.62999 0.63154 e

9 R1 0.55435 0.55588 o

10 R1 0.48617 0.48769 e

11 R1 0.42572 0.42734 o

12 R1 0.37353 0.37453 e

13 R1 0.33092 0.33681 o

0.28511 e
2 V3, V4 0.28257

0.27992 o

0.18785 e
1 V3, V4 0.18726

0.18780 o

0.68233 e
0 V3, V4 0.06749

0.68233 o

λ = 0.3

k CO SC × 10−6 QM × 10−6 Π

0 R1 1.43022 1.43185 e

1 R1 1.31100 1.31263 o

2 R1 1.19807 1.19970 e

3 R1 1.09145 1.09307 o

4 R1 0.99114 0.99274 e

5 R1 0.89714 0.89874 o

6 R1 0.80947 0.81106 e

7 R1 0.72815 0.72972 o

8 R1 0.65319 0.65474 e

9 R1 0.58463 0.58617 o

10 R1 0.52253 0.52405 e

11 R1 0.46698 0.46849 o

12 R1 0.41815 0.41962 e

13 R1 0.37638 0.37840 o

14 R1 0.34258 0.34138 e

15 S∗ 0.32656 0.32565 o

0.27285 e
1 V3, V4 0.27206

0.27233 o

0.18958 e
0 V3, V4 0.18879

0.18958 o

1st bifurcation λ =
√

2/3

k CO SC × 10−6 QM × 10−6 Π

0 R1 1.33746 1.33906 e

1 R1 1.23850 1.24010 o

2 R1 1.14475 1.14635 e

3 R1 1.05621 1.05781 o

4 R1 0.97287 0.97448 e

5 R1 0.89475 0.89635 o

6 R1 0.82183 0.82344 e

7 R1 0.75412 0.75573 o

8 R1 0.69162 0.69323 e

9 R1 0.63433 0.63594 o

10 R1 0.58225 0.58385 e

11 R1 0.53537 0.53698 o

12 R1 0.49371 0.49531 e

13 R1 0.45725 0.45885 o

14 R1 0.42600 0.42760 e

15 R1 0.39996 0.40156 o

16 R1 0.37912 0.38073 e

17 R1 0.36350 0.36510 o

18 R1 0.35308 0.35469 e

19 R1 0.34787 0.34948 o

λ = 0.7

k CO SC × 10−6 QM × 10−6 Π

0 R1 1.15146 1.15301 e

1 R1 1.09727 1.09884 o

2 R1 1.04613 1.04774 e

3 R1 0.99809 0.99974 o

4 R1 0.95321 0.95492 e

5 R1 0.91156 0.91336 o

6 R1 0.87327 0.87521 e

7 R1 0.83853 0.84074 o

8 R1 0.80767 0.81046 e

9 R1 0.78143 0.78483 o

10 R5 0.76253 0.76244 e

11 R5 0.74009 0.73918 o

12 R5 0.71197 0.71180 e

13 R5 0.67967 0.67994 o

14 R5 0.64373 0.64420 e

15 R5 0.60441 0.60500 o

16 R5 0.56189 0.56255 e

17 R5 0.51626 0.51698 o

18 R5 0.46761 0.46836 e

19 R5 0.41598 0.41677 o
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Table 3. Energy-level shifts of the n = 20 manifold for γ ≈ 2.8 × 10−6 and different values of λ. Comparison between the
semiclassical and quantum-mechanical results. k: semiclassical quantum number. CO: corresponding type of the classical orbit,
vibrational (Vi), rotational (Ri) or ro–vibrational (S∗ close to separatrix). SC: semiclassical result. QM: quantum-mechanical
result. Π : parity of the quantum-mechanical state.

2nd bifurcation λ =
√

2/3

k CO SC × 10−6 QM × 10−6 Π

0 R5 1.04128 1.04219 e

1 R5 1.03815 1.03906 o

2 R5 1.03190 1.03281 e

3 R5 1.02253 1.02344 o

4 R5 1.01003 1.01094 e

5 R5 0.99440 0.99531 o

6 R5 0.97565 0.97656 e

7 R5 0.95378 0.95469 o

8 R5 0.92878 0.92969 e

9 R5 0.90065 0.90156 o

10 R5 0.86940 0.87031 e

11 R5 0.83503 0.83594 o

12 R5 0.79753 0.79844 e

13 R5 0.75690 0.75781 o

14 R5 0.71315 0.71406 e

15 R5 0.66628 0.66719 o

16 R5 0.61628 0.61719 e

17 R5 0.56315 0.56406 o

18 R5 0.50690 0.50781 e

19 R5 0.44753 0.44844 o

λ = 1.0

k CO SC × 10−6 QM × 10−6 Π

1.47397 e
0 V3, V4 1.47241

1.47397 o

1.30790 e
1 V3, V4 1.30633

1.30790 o

1.16078 e
2 V3, V4 1.15920

1.16078 o

1.03288 e
3 V3, V4 1.03128

1.03288 o

0.92478 e
4 V3, V4 0.92312

0.92478 o

0.83842 e
5 V3, V4 0.83618

0.83769 o

12 S∗ 0.78125 0.78403 e

13 R5 0.76473 0.76830 o

14 R5 0.73227 0.73266 e

15 R5 0.69394 0.69500 o

16 R5 0.65088 0.65196 e

17 R5 0.60361 0.60471 o

18 R5 0.55243 0.55355 e

19 R5 0.49754 0.49866 o

3rd bifurcation λ = 2/
√

3

k CO SC × 10−6 QM × 10−6 Π

1.93281 e
0 V3, V4 1.93099

1.93281 o

1.65156 e
1 V3, V4 1.64974

1.65156 o

1.40156 e
2 V3, V4 1.39974

1.40156 o

1.18281 e
3 V3, V4 1.18099

1.18281 o

0.99531 e
4 V3, V4 0.99349

0.99531 o

0.83906 e
5 V3, V4 0.83724

0.83906 o

0.71406 e
6 V3, V4 0.71224

0.71406 o

0.62031 e
7 V3, V4 0.61849

0.62031 o

0.55781 e
8 V3, V4 0.55599

0.55781 o

0.52656 e
9 V3, V4 0.52474

0.52665 o

λ = 1.3

k CO SC × 10−6 QM × 10−6 Π

2.42581 e
0 V3, V4 2.42371

2.42581 o

2.02547 e
1 V3, V4 2.02336

2.02547 o

1.66984 e
2 V3, V4 1.66773

1.66984 o

1.35906 e
3 V3, V4 1.35694

1.35906 o

1.09338 e
4 V3, V4 1.09124

1.09338 o

0.87338 e
5 V3, V4 0.87118

0.87338 o

0.70107 e
6 V3, V4 0.69836

0.70054 o

0.59153 e
7 V3, V4 0.58074

0.57099 o

3 R1 0.50874 0.50803 e

2 R1 0.44317 0.44429 o

1 R1 0.36854 0.36939 e

0 R1 0.28610 0.28733 o
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a given n−manifold. The comparison with the quantum-
mechanical calculations indicates that the “missing state”
(i.e. eigentrajectory) lies in the close neighbourhood of
the separatrix. This effect appears because the states near
the separatrix are subjected to quantum mechanical tun-
nelling [23]. Therefore, within our semiclassical approach,
we cannot exactly find and categorise missing semiclassi-
cal states.

However, the energy of these missing states labelled
with k = k∗ can be estimated by taking simply εn,k∗ = εs,
the energy at the separatrix. Then the numerical solu-
tion of (17) for εs gives us an approximate value of k∗
for a given “missing state”. We name missing states as
ro-vibrational states and are denoted by S∗ in Tables 2
and 3.

It is important to remark that Tables 2 and 3 show
that the structure and evolution of the quantum spectra
are easily explained from the semiclassical results, which
are nothing else that the reflex of the structure and evolu-
tion of the classical phase space. In this sense, the classical
vibrational motion is connected with the energy levels of
doublet symmetry, while the non-degenerate energy levels
are connected with the classical rotational motion. More-
over, the qualitative changes in the energy level spectra
as λ varies are the semiclassical/quantum reflex of the bi-
furcations that take place in the classical counterpart.

Finally, the results obtained in this section can be ap-
plied to the case of the generalised van der Waals interac-
tion. In this sense, they provide a complete semiclassical
description of that problem, which was partially studied
by Ganesan and Lakshamanan [25] with different variables
and only for the integrable and near-integrable cases.

5 Conclusions

We present a combined quantum mechanical, classical and
semiclassical study of the energy spectrum of a Rydberg
hydrogen atom in the presence of uniform magnetic and
quadrupolar electric fields when the z component Pφ of
the angular momentum is zero. Both external fields have
been taken as a perturbation to the pure Coulombian sys-
tem. Owing to the axial symmetry of the problem, the
system has two degrees of freedom, and the dynamics is
governed by a Hamiltonian depending on a dimensionless
parameter λ that represents the relative field strengths.

In the classical analysis, we have performed a Delaunay
normalization in order to reduce the problem to a inte-
grable dynamical system where only one degree of free-
dom is left. We have studied the dynamics arising from
the normalised Hamiltonian H′

1 both in cylindrical (φ2, I2)
and spherical (u, v, w) variables, and we have found that:
(i) the phase space is made up of two different kind of tra-
jectories: the vibrational and the rotational trajectories.
(ii) Depending of the value of λ, we found four differ-
ent phase flow regimes separated by three oyster bifurca-
tions for λ = (

√
2/3,

√
2/3, 2/

√
3). (iii) In each regime,

the phase space structure is determined by the presence
and stability of six isolated equilibria.

In the evolution of the quantum energy spectrum as
a function of λ, we have found that the energies of the
classical equilibria act like the enveloping of the quan-
tum spectrum, in such a way that the quantum spectrum
presents three zones of accumulation around the values
of λ for the bifurcations. In other words, the evolution of
the energies of the classical equilibria is somehow kind of
sketch of the evolution of the quantum spectrum.

From the normalised Hamiltonian H′
1, we have cal-

culated semiclassically the energy levels by means of the
EBK quantization rules. These semiclassical results are
in very good agreement with quantum results (see Tabs. 2
and 3). From the comparison of semiclassical and quantum
results to the classical phase space structure, we find that
the vibrational (classical) orbits are connected with the
degenerate energy levels of doublet symmetry, while rota-
tional (classical) orbits are connected with non-degenerate
energy levels.

In the quantum mechanical calculations, a tiny split-
ting of the degeneracy appears in the vibrational energy
levels near the classical separatrix. This tiny splitting re-
sults from tunnelling effects between vibrational states V3

and V4 in the vicinity of the separatrix. This splitting does
not appear in the semiclassical energy levels because the
semiclassical EBK rules do not incorporate the quantum-
mechanical tunnelling.

It is worth to note that we have found in this work a
deep parallelism between classical and quantum descrip-
tions. This proves again that classical mechanics may be
use as a powerful tool in order to get a compact geometric
picture of the energy level structure of perturbed Rydberg
atoms.

To conclude, although we do not enter into the tech-
nical details involved in the possible experimental imple-
mentation of the system, we think that the values of the
parameters considered in this work would correspond to
accessible fields at the laboratory (e.g. γ = 2.8 × 10−6

corresponds to B ≈ 1.3 teslas). We leave this question to
experimentalists.

This research has been partially supported by the Spanish Min-
istry of Science and Technology (DGI Project No. BFM2002-
03157).
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